Comparación de rendimiento estructural entre los aceros ASTM A36 y A500 Grado B en contextos de ingeniería automotriz [Comparison of Structural Performance between ASTM A36 and A500 Grade B Steels in Automotive Engineering Contexts]

Autores/as

  • Edwin Javier Morejón-Sánchez Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador
  • Esteban Fernando López-Espinel Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador
  • Andrés Edisson Águila-León Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador
  • Mario Fernando Vargas-Brito Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

DOI:

https://doi.org/10.62574/rmpi.v5iTecnologia.425

Palabras clave:

acero, propiedades mecánicas, tracción, ductilidad, sostenibilidad, (Fuente: Tesauro UNESCO).

Resumen

Esta labor lleva a cabo un análisis comparativo de las características mecánicas de los aceros estructurales ASTM A36 y ASTM A500 Grado B, empleando perfiles tubulares cuadrados de 50×50×3 mm que han sido sometidos a pruebas normalizadas de tracción y flexión.  El estudio se llevó a cabo bajo criterios de calidad según la norma ISO/IEC 17025:2017, incluyendo estudios químicos, metalográficos y exámenes mecánicos.  Los descubrimientos muestran que el acero A500 Grado B muestra un desempeño superior en cuanto a resistencia, presentando un límite elástico 24.6% superior (319 MPa en comparación con 256 MPa) y una resistencia a la tracción 12.8% superior (459 MPa en comparación con 407 MPa).  Sin embargo, el acero A36 demostró una ductilidad más alta (21.3% en comparación con 17.8%). Basándonos en estos hallazgos, se propone una propuesta de elección de materiales enfocada en usos en carrocerías de automóviles, dando prioridad a la eficiencia estructural, la disminución de peso y la extensión de la vida útil de los componentes, en consonancia con metas de sostenibilidad.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Edwin Javier Morejón-Sánchez , Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

Esteban Fernando López-Espinel , Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

Andrés Edisson Águila-León , Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

Mario Fernando Vargas-Brito , Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

Citas

Abbaschian, R., & Reed-Hill, R. E. (2022). Physical Metallurgy Principles (5th ed.). Springer Nature. https://doi.org/10.1007/978-3-030-84085-3

Aghayan, S., & Khosravifard, A. (2023). Influence of grain refinement on mechanical properties of structural steels for automotive applications. Materials Science and Engineering: A, 865, 144508.

https://doi.org/10.1016/j.msea.2023.144508

ASTM International. (2022). ASTM E8/E8M-22: Standard test methods for tension testing of metallic materials. https://doi.org/10.1520/E0008_E0008M-22

ASTM International. (2022). ASTM E290-22: Standard test methods for bend testing of material for ductility. https://doi.org/10.1520/E0290-22

ASTM International. (2022). ASTM A36/A36M-22: Standard specification for carbon structural steel. https://doi.org/10.1520/A0036_A0036M-22

ASTM International. (2023). ASTM A500/A500M-23: Standard specification for cold-formed welded and seamless carbon steel structural tubing in rounds and shapes. https://doi.org/10.1520/A0500_A0500M-23

Bartkowski, P., Cieślak, M., & Stachowiak, A. (2023). Material selection optimization for lightweight structural automotive components. Materials & Design, 227, 111688. https://doi.org/10.1016/j.matdes.2023.111688

Caminero, M. A., Lopez-Montero, A., & Pavlopoulou, S. (2022). Fatigue behavior assessment of automotive steel tubular structures: Experimental and computational approaches. International Journal of Fatigue, 163, 107115. https://doi.org/10.1016/j.ijfatigue.2022.107115

Dhaliwal, J. S., Singh, J., & Singh, G. (2022). Experimental investigation of energy absorption characteristics in structural steel components for crashworthiness applications. Thin-Walled Structures, 176, 109291. https://doi.org/10.1016/j.tws.2022.109291

García-Moreno, F., Liebscher, A., & Banhart, J. (2023). Weight reduction strategies in modern automotive body structures: A comprehensive review. Progress in Materials Science, 130, 100947. https://doi.org/10.1016/j.pmatsci.2022.100947

Gholampour, A., & Ozbakkaloglu, T. (2022). Mechanical properties of conventional and high-strength steels: A comprehensive review of experimental data and analytical models. Journal of Materials Research and Technology, 18, 2235-2261. https://doi.org/10.1016/j.jmrt.2022.03.146

Jiang, X., & Chen, W. (2023). Material selection principles for structural components in electric vehicles: Challenges and opportunities. Journal of Materials Engineering and Performance, 32(4), 2687-2701. https://doi.org/10.1007/s11665-022-07323-0

Kanni, K., Venkatachalam, G., & Mohan, S. (2023). Advanced digital image processing techniques for automated microstructural phase quantification in low carbon steels. Measurement Science and Technology, 34(3), 035401. https://doi.org/10.1088/1361-6501/aca63c

Khosravifard, A., & Aghayan, S. (2022). Mechanical behavior of tubular steel sections under combined loading conditions relevant to automotive applications. Engineering Structures, 262, 114309. https://doi.org/10.1016/j.engstruct.2022.114309

Liu, J., & Ramírez, C. (2024). Impact response analysis of ASTM A500 Grade B steel tubular sections for automotive safety applications. International Journal of Impact Engineering, 175, 104373.

https://doi.org/10.1016/j.ijimpeng.2023.104373

López-Espinel, E. F., Pineda, G. V., Cepeda, J. L., & Zurita, J. D. (2023). Análisis de imágenes metalográficas mediante el uso de OpenCV para la estimación del contenido de carbono en acero A36. Revista Dilemas Contemporáneos: Educación, Política y Valores, 11(1), Artículo no.:100. https://doi.org/10.46377/dilemas.v11i1.3421

Meghwal, A., Anupam, A., & Rajpal, S. (2023). Microstructural aspects of strength and toughness in low and medium carbon steels. Journal of Materials Research, 38(3), 1126-1142. https://doi.org/10.1557/s43578-022-00848-z

Mehrabi, K., Rahimian, M., & Hadavi, V. (2022). Quantitative metallography of conventional steels: Challenges and advances in digital approaches. Metals, 12(5), 847. https://doi.org/10.3390/met12050847

Moradshahi, M., Tavakoli, R., & Hosseini-Toudeshky, H. (2022). Microstructure-based assessment of mechanical properties in structural steels. Materials Science and Engineering: A, 832, 142394.

https://doi.org/10.1016/j.msea.2021.142394

Moshtaghi, M., & Safaei, K. (2022). Advanced image processing algorithms for phase quantification in carbon steels: A comparative study. Metallography, Microstructure, and Analysis, 11(1), 73-86. https://doi.org/10.1007/s13632-022- 00824-3

Nauman, S., & Ohmori, A. (2022). Experimental investigation of bendability and springback behavior of structural steel tubes for automotive applications. Journal of Manufacturing Processes, 83, 309-320. https://doi.org/10.1016/j.jmapro.2022.08.053

Navarro-Martínez, M., Cortés-Lorenzo, R., & González-Pérez, I. (2022). Cost efficiency analysis of welding processes for automotive structural components. The International Journal of Advanced Manufacturing Technology, 118(5), 1765- 1778. https://doi.org/10.1007/s00170-021-08138-4

Pouranvari, M., & Marashi, P. (2022). Advanced tensile testing methodologies for structural steel characterization. Experimental Techniques, 46(1), 151-167. https://doi.org/10.1007/s40799-021-00467-z

Prabhu, T. R., & Alugubelli, S. R. (2022). Comparative study of ASTM structural steel grades for automotive applications: Processing-structure-property correlations. Materials Science and Engineering: A, 832, 142235. https://doi.org/10.1016/j.msea.2021.142235

Rodríguez, C., López, A., & Sánchez, M. (2024). Variabilidad en propiedades mecánicas de aceros estructurales: Implicaciones para el diseño automotriz. International Journal of Metallurgical Engineering, 12(1), 89-104. https://doi.org/10.5281/ijme.2024.12.1.89

Sharma, V., Mishra, R. S., & Kamaraj, M. (2022). Mechanical behavior and failure analysis of structural steel components: Implications for automotive safety design. Engineering Failure Analysis, 142, 106701. https://doi.org/10.1016/j.engfailanal.2022.106701

Shrestha, P., & Kim, J. (2022). Multi-objective optimization framework for material selection in automotive body structure design. Structural and Multidisciplinary Optimization, 65(1), 3. https://doi.org/10.1007/s00158-021-03124-6

Tocci, M., Angella, G., & Donnini, R. (2022). Microalloying effects on the strength and ductility of structural steels: Recent advances and perspectives. Materials Science and Engineering: A, 843, 143138. https://doi.org/10.1016/j.msea.2022.143138

Xiong, L., Shen, Y., & Fan, S. (2023). Lightweight design strategies for automotive body structures: Materials selection and optimization approaches. Journal of Materials Processing Technology, 313, 117804. https://doi.org/10.1016/j.jmatprotec.2022.117804

Zhang, Q., Wu, J., & Chen, L. (2023). Mechanical property characterization of ASTM A36 steel under different loading conditions and its application in automotive structural components. Engineering Structures, 283, 115718. https://doi.org/10.1016/j.engstruct.2023.115718

Zhao, B., & Li, M. (2023). Recent advances in characterization methodologies for structural steels in automotive applications. Materials Characterization, 196, 112508. https://doi.org/10.1016/j.matchar.2022.112508

Descargas

Publicado

2025-08-08

Cómo citar

Morejón-Sánchez , E. J., López-Espinel , E. F., Águila-León , A. E., & Vargas-Brito , M. F. . (2025). Comparación de rendimiento estructural entre los aceros ASTM A36 y A500 Grado B en contextos de ingeniería automotriz [Comparison of Structural Performance between ASTM A36 and A500 Grade B Steels in Automotive Engineering Contexts]. Revista Multidisciplinaria Perspectivas Investigativas, 5(Tecnologia), 162–181. https://doi.org/10.62574/rmpi.v5iTecnologia.425