Parametric Evaluation for the Optimized Structural Design of Drive Shafts Subjected to Infinite Fatigue Resistance Criteria [Evaluación paramétrica para el diseño estructural optimizado de ejes de transmisión sometidos a criterios de resistencia a fatiga]
DOI:
https://doi.org/10.62574/rmpi.v5iTecnologia.424Keywords:
fatigue, transmission, optimization, keyway, automotive, (Source: UNESCO Thesaurus).Abstract
This research proposes a structured approach for the design and improvement of transmission shafts used in automotive systems, aiming to ensure infinite fatigue resistance under combined cyclic loading conditions. An iterative method was employed, incorporating the analysis of critical areas such as keyways and geometric transitions, utilizing the Maximum Shear Stress Theory as the primary indicator of failure due to fatigue. The initial design, based on static strength criteria, exhibited stress levels exceeding fatigue limits at the output keyway (237.8 MPa). Through a parametric optimization process focused on modifying diameters and fillet radii, the equivalent stress was reduced to 125.12 MPa, significantly enhancing durability without compromising functional integrity. These improvements resulted in a 12% increase in total weight. A visual tool called the "traffic light diagram" was implemented to simplify the visual verification of the design, reinforcing the proposal as an effective instrument for critical transmission components.
Downloads
References
Arora, J. S. (2004). Introduction to optimum design (2a ed.). Elsevier Academic Press.
Budynas, R. G., y Nisbett, J. K. (2011). Shigley's mechanical engineering design (9a ed.). McGraw-Hill.
Kang, M. K., Kim, S. K., Kim, D. H., y Kim, Y. S. (2014). Multidisciplinary design optimization of a transmission shaft using a particle swarm optimization strategy. International Journal of Precision Engineering and Manufacturing, 15(8), 1701-1706. [https://doi.org/10.1007/s12541-014-0521-8]{.underline}
Lee, Y. L., Pan, J., Hathaway, R., y Barkey, M. (2005). Fatigue testing and analysis: Theory and practice. Elsevier Butterworth-Heinemann.
Norton, R. L. (2006). Machine design: An integrated approach (3a ed.). Prentice Hall.
Peterson, R. E. (1974). Stress concentration factors. John Wiley & Sons.
Pilkey, W. D., y Pilkey, D. F. (2008). Peterson's stress concentration factors (3a ed.). John Wiley & Sons.
Ranjan, V., Rao, P. S., y Raju, N. V. (2018). Design and analysis of power transmission shaft for automobile applications using FEA. Materials Today: Proceedings, 5(9), 19667-19675. [https://doi.org/10.1016/j.matpr.2018.06.328]{.underline}
Sathishkumar, P., Selvakumar, A. S., y Somanathan, D. (2022). A comprehensive investigation on design and analysis of transmission shaft. Materials Today: Proceedings, 62, 2380-2390. [https://doi.org/10.1016/j.matpr.2022.03.309]{.underline}
Shigley, J. E., y Mischke, C. R. (2008). Mechanical engineering design (8a ed.). McGraw-Hill.
Stephens, R. I., Fatemi, A., Stephens, R. R., y Fuchs, H. O. (2000). Metal fatigue in engineering (2a ed.). John Wiley & Sons.
Yildiz, E. N., y Göksenli, A. (2017). Mechanical failure analysis of power transmission shaft of two-wheeled vehicle as a result of fatigue. Engineering Failure Analysis, 83, 47-56. [https://doi.org/10.1016/j.engfailanal.2017.09.009]{.underline}
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jorge Andrés Rodas-Buenaño, Giovanny Vinicio Pineda-Silva, Andrés Sebastián Villacrés-Quintana, Javier Renato Moyano-Arévalo

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
CC BY-NC-SA : This license allows reusers to distribute, remix, adapt and build upon the material in any medium or format for non-commercial purposes only, and only if attribution is given to the creator. If you remix, adapt or build upon the material, you must license the modified material under identical terms.
OAI-PMH URL: https://rperspectivasinvestigativas.org/index.php/multidiscipinaria/oai