Comparison of Structural Performance between ASTM A36 and A500 Grade B Steels in Automotive Engineering Contexts [Comparación de rendimiento estructural entre los aceros ASTM A36 y A500 Grado B en contextos de ingeniería automotriz]

Authors

  • Edwin Javier Morejón-Sánchez Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador
  • Esteban Fernando López-Espinel Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador
  • Andrés Edisson Águila-León Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador
  • Mario Fernando Vargas-Brito Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

DOI:

https://doi.org/10.62574/rmpi.v5iTecnologia.425

Keywords:

steel, mechanical properties, tension, ductility, sustainability, (Source: UNESCO Thesaurus).

Abstract

This study presents a comparative analysis of the mechanical properties of structural steels ASTM A36 and ASTM A500 Grade B, using square tubular profiles of 50×50×3 mm subjected to standardized tensile and bending tests. The research was conducted under quality criteria in accordance with ISO/IEC 17025:2017 standards, including chemical characterization, metallographic studies, and mechanical evaluations. The findings indicate that ASTM A500 Grade B exhibits superior performance in terms of strength, showing a 24.6% higher yield strength (319 MPa compared to 256 MPa) and a 12.8% greater tensile strength (459 MPa compared to 407 MPa). However, ASTM A36 demonstrated higher ductility (21.3% compared to 17.8%). Based on these results, a material selection strategy is proposed for automotive body applications, prioritizing structural efficiency, weight reduction, and extended service life of critical components, in alignment with sustainability objectives.

Downloads

Download data is not yet available.

Author Biographies

Edwin Javier Morejón-Sánchez , Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

Esteban Fernando López-Espinel , Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

Andrés Edisson Águila-León , Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

Mario Fernando Vargas-Brito , Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

References

Abbaschian, R., & Reed-Hill, R. E. (2022). Physical Metallurgy Principles (5th ed.). Springer Nature. https://doi.org/10.1007/978-3-030-84085-3

Aghayan, S., & Khosravifard, A. (2023). Influence of grain refinement on mechanical properties of structural steels for automotive applications. Materials Science and Engineering: A, 865, 144508.

https://doi.org/10.1016/j.msea.2023.144508

ASTM International. (2022). ASTM E8/E8M-22: Standard test methods for tension testing of metallic materials. https://doi.org/10.1520/E0008_E0008M-22

ASTM International. (2022). ASTM E290-22: Standard test methods for bend testing of material for ductility. https://doi.org/10.1520/E0290-22

ASTM International. (2022). ASTM A36/A36M-22: Standard specification for carbon structural steel. https://doi.org/10.1520/A0036_A0036M-22

ASTM International. (2023). ASTM A500/A500M-23: Standard specification for cold-formed welded and seamless carbon steel structural tubing in rounds and shapes. https://doi.org/10.1520/A0500_A0500M-23

Bartkowski, P., Cieślak, M., & Stachowiak, A. (2023). Material selection optimization for lightweight structural automotive components. Materials & Design, 227, 111688. https://doi.org/10.1016/j.matdes.2023.111688

Caminero, M. A., Lopez-Montero, A., & Pavlopoulou, S. (2022). Fatigue behavior assessment of automotive steel tubular structures: Experimental and computational approaches. International Journal of Fatigue, 163, 107115. https://doi.org/10.1016/j.ijfatigue.2022.107115

Dhaliwal, J. S., Singh, J., & Singh, G. (2022). Experimental investigation of energy absorption characteristics in structural steel components for crashworthiness applications. Thin-Walled Structures, 176, 109291. https://doi.org/10.1016/j.tws.2022.109291

García-Moreno, F., Liebscher, A., & Banhart, J. (2023). Weight reduction strategies in modern automotive body structures: A comprehensive review. Progress in Materials Science, 130, 100947. https://doi.org/10.1016/j.pmatsci.2022.100947

Gholampour, A., & Ozbakkaloglu, T. (2022). Mechanical properties of conventional and high-strength steels: A comprehensive review of experimental data and analytical models. Journal of Materials Research and Technology, 18, 2235-2261. https://doi.org/10.1016/j.jmrt.2022.03.146

Jiang, X., & Chen, W. (2023). Material selection principles for structural components in electric vehicles: Challenges and opportunities. Journal of Materials Engineering and Performance, 32(4), 2687-2701. https://doi.org/10.1007/s11665-022-07323-0

Kanni, K., Venkatachalam, G., & Mohan, S. (2023). Advanced digital image processing techniques for automated microstructural phase quantification in low carbon steels. Measurement Science and Technology, 34(3), 035401. https://doi.org/10.1088/1361-6501/aca63c

Khosravifard, A., & Aghayan, S. (2022). Mechanical behavior of tubular steel sections under combined loading conditions relevant to automotive applications. Engineering Structures, 262, 114309. https://doi.org/10.1016/j.engstruct.2022.114309

Liu, J., & Ramírez, C. (2024). Impact response analysis of ASTM A500 Grade B steel tubular sections for automotive safety applications. International Journal of Impact Engineering, 175, 104373.

https://doi.org/10.1016/j.ijimpeng.2023.104373

López-Espinel, E. F., Pineda, G. V., Cepeda, J. L., & Zurita, J. D. (2023). Análisis de imágenes metalográficas mediante el uso de OpenCV para la estimación del contenido de carbono en acero A36. Revista Dilemas Contemporáneos: Educación, Política y Valores, 11(1), Artículo no.:100. https://doi.org/10.46377/dilemas.v11i1.3421

Meghwal, A., Anupam, A., & Rajpal, S. (2023). Microstructural aspects of strength and toughness in low and medium carbon steels. Journal of Materials Research, 38(3), 1126-1142. https://doi.org/10.1557/s43578-022-00848-z

Mehrabi, K., Rahimian, M., & Hadavi, V. (2022). Quantitative metallography of conventional steels: Challenges and advances in digital approaches. Metals, 12(5), 847. https://doi.org/10.3390/met12050847

Moradshahi, M., Tavakoli, R., & Hosseini-Toudeshky, H. (2022). Microstructure-based assessment of mechanical properties in structural steels. Materials Science and Engineering: A, 832, 142394.

https://doi.org/10.1016/j.msea.2021.142394

Moshtaghi, M., & Safaei, K. (2022). Advanced image processing algorithms for phase quantification in carbon steels: A comparative study. Metallography, Microstructure, and Analysis, 11(1), 73-86. https://doi.org/10.1007/s13632-022- 00824-3

Nauman, S., & Ohmori, A. (2022). Experimental investigation of bendability and springback behavior of structural steel tubes for automotive applications. Journal of Manufacturing Processes, 83, 309-320. https://doi.org/10.1016/j.jmapro.2022.08.053

Navarro-Martínez, M., Cortés-Lorenzo, R., & González-Pérez, I. (2022). Cost efficiency analysis of welding processes for automotive structural components. The International Journal of Advanced Manufacturing Technology, 118(5), 1765- 1778. https://doi.org/10.1007/s00170-021-08138-4

Pouranvari, M., & Marashi, P. (2022). Advanced tensile testing methodologies for structural steel characterization. Experimental Techniques, 46(1), 151-167. https://doi.org/10.1007/s40799-021-00467-z

Prabhu, T. R., & Alugubelli, S. R. (2022). Comparative study of ASTM structural steel grades for automotive applications: Processing-structure-property correlations. Materials Science and Engineering: A, 832, 142235. https://doi.org/10.1016/j.msea.2021.142235

Rodríguez, C., López, A., & Sánchez, M. (2024). Variabilidad en propiedades mecánicas de aceros estructurales: Implicaciones para el diseño automotriz. International Journal of Metallurgical Engineering, 12(1), 89-104. https://doi.org/10.5281/ijme.2024.12.1.89

Sharma, V., Mishra, R. S., & Kamaraj, M. (2022). Mechanical behavior and failure analysis of structural steel components: Implications for automotive safety design. Engineering Failure Analysis, 142, 106701. https://doi.org/10.1016/j.engfailanal.2022.106701

Shrestha, P., & Kim, J. (2022). Multi-objective optimization framework for material selection in automotive body structure design. Structural and Multidisciplinary Optimization, 65(1), 3. https://doi.org/10.1007/s00158-021-03124-6

Tocci, M., Angella, G., & Donnini, R. (2022). Microalloying effects on the strength and ductility of structural steels: Recent advances and perspectives. Materials Science and Engineering: A, 843, 143138. https://doi.org/10.1016/j.msea.2022.143138

Xiong, L., Shen, Y., & Fan, S. (2023). Lightweight design strategies for automotive body structures: Materials selection and optimization approaches. Journal of Materials Processing Technology, 313, 117804. https://doi.org/10.1016/j.jmatprotec.2022.117804

Zhang, Q., Wu, J., & Chen, L. (2023). Mechanical property characterization of ASTM A36 steel under different loading conditions and its application in automotive structural components. Engineering Structures, 283, 115718. https://doi.org/10.1016/j.engstruct.2023.115718

Zhao, B., & Li, M. (2023). Recent advances in characterization methodologies for structural steels in automotive applications. Materials Characterization, 196, 112508. https://doi.org/10.1016/j.matchar.2022.112508

Published

2025-08-08

How to Cite

Morejón-Sánchez , E. J., López-Espinel , E. F., Águila-León , A. E., & Vargas-Brito , M. F. . (2025). Comparison of Structural Performance between ASTM A36 and A500 Grade B Steels in Automotive Engineering Contexts [Comparación de rendimiento estructural entre los aceros ASTM A36 y A500 Grado B en contextos de ingeniería automotriz]. Multidisciplinary Journal Investigative Perspectives/Revista Multidisciplinaria Perspectivas Investigativas, 5(Tecnologia), 162–181. https://doi.org/10.62574/rmpi.v5iTecnologia.425