Feasibility study for converting the Chevrolet Aveo 1.5L vehicle to electric propulsion technology [Estudio de viabilidad para conversión del vehículo Chevrolet Aveo 1.5L a tecnología de propulsión eléctrica]
DOI:
https://doi.org/10.62574/rmpi.v5iTecnologia.415Keywords:
vehicle conversion, electric propulsion, energy efficiency, . (Source: UNESCO Thesaurus).Abstract
The conversion of internal combustion vehicles to electric propulsion represents a viable strategy for reducing pollutant emissions and optimising the energy efficiency of urban transport. This study analyses the technical and economic conversion of an Aveo 1.5L vehicle using experimental methodology and modelling in MATLAB. Specific components were selected, including a MOTIVE MV275 synchronous electric motor, a 20 kWh battery system, and a TM4 NEURO 200 control unit. The dynamic analysis was carried out on a 15 km urban-rural route with maximum gradients of 45 degrees in Ecuadorian Andean conditions. The results show energy consumption of 15 kWh/100 km compared to 8 litres/100 km for the original vehicle, representing a significant improvement in efficiency. The total conversion investment is $10,250 USD, with operating costs of $18/100 km versus $10/100 km for fossil fuel.
Downloads
References
Aguila, A. (2022, noviembre). Cálculos análisis dinámico. Ecuador.
Blázquez Lidoy, J., & Martín Moreno, J. (2010). Eficiencia energética en la automoción, el vehículo eléctrico, un reto del presente. [Publicación no especificada], 76–85.
C. K. B. (1995, marzo). Designing an electric vehicle conversion. Conference Record Southcon/95, 303–308.
Chevrolet. (2018). Ficha técnica Aveo. Owners Manual, 6.
Comillas, A. d. (2020). Elementos de arrastre y transmisión de movimiento. ICAI.
Cybercar. (2020). Motor eléctrico MV275. https://cybercar.es/producto/motor-electrico-mv275/
DANA. (2022). TM4 NEURO vehicle controller. https://www.danatm4.com/wp-content/uploads/2018/08/TM4-NEURO-200-Product-Brochure.pdf
Delfim Pedrosa, V. M. (2012). Conversion of an internal combustion. Seminário Anual de Automação, Eletrónica Industrial e Instrumentação.
Emadi, A. (2015). Advanced electric drive vehicles.
Fiori, C., & Ahn, K. (2016). Power-based electric vehicle energy consumption model. Applied Energy, 168, 257–268.
Foro Coches Eléctricos. (2011). Motor eléctrico versus motor de combustión: Par, potencia y eficiencia. https://forococheselectricos.com/2011/11/motor-electricoversus-motor-de.html
Gao, Y., & Ehsani, M. (2009). Investigation of battery technologies for the army's hybrid vehicle application. Proceedings on Vehicular Technology Conference, 1505–1509.
Gao, Z. (2017). Battery capacity and recharging needs for electric buses in city transit service. [Revista no especificada], 588–600.
Gutiérrez, J. A. (2013, marzo). Análisis y prospectiva de vehículos eléctricos. [Publicación no especificada].
Instituto de Sostenibilidad Ambiental. (2020, enero). Comparativa ambiental entre diferentes alternativas de vehículos (p. 88). [Publicación no especificada].
Jia Ying Yong, V. K. (2015). A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renewable and Sustainable Energy Reviews, 51, 365–385. https://doi.org/10.1016/j.rser.2015.04.130
Kan, Z., & Tang, L. (2018). Estimating vehicle fuel consumption and emissions using GPS big data. International Journal of Environmental Research and Public Health, 15(3), Article 566.
Kokam Battery. (s. f.). [Folleto técnico]. Recuperado de https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.scribd.com%2Fdocument%2F546455883%2FKokam-48V-Pack-Brochure
Andrew, M., & Carr, C. (1983). The lead-acid battery—Demonstrating the systems design approach to a practical electric vehicle power source. IEEE Transactions on Vehicular Technology, VT-32(1), 32–39.
Neha Tiwari, P. V. (2023). Converting gasoline vehicle into an electric vehicle (EV)—A review. Materials Today: Proceedings, 72(3), 379–388. https://doi.org/10.1016/j.matpr.2022.12.161
Nguyen-Tien, V., Zhang, C., Strobl, E., & Elliott, R. J. R. (2025). The closing longevity gap between battery electric vehicles and internal combustion vehicles in Great Britain. Nature Energy, 10, 354–364. https://doi.org/10.1038/s41560-024-01698-1
Richardson, D. B. (2013). Electric vehicles and the electric grid: A review of modeling approaches, impacts, and renewable energy integration. Renewable and Sustainable Energy Reviews, 19, 247–254. https://doi.org/10.1016/j.rser.2012.11.042
Sanguesa, J., Torres-Sanz, V., Garrido, P., Martinez, F., & Marquez-Barja, J. (2021). A review on electric vehicles: Technologies and challenges. Smart Cities, 4(1), 372–404. https://doi.org/10.3390/smartcities4010022
Volkswagen AG. (2013, julio). Self study program 820233—Basics of electric vehicles—Design and function. Volkswagen Academy.
Weinstock, I., & Vyas, V. (1983). Summary of electric vehicle energy. IEEE Transactions on Vehicular Technology, VT-32(1), 15–20.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Andrés Edisson Águila-León , Esteban Fernando López-Espinel, Edwin Javier Morejón-Sánchez, Mario Fernando Vargas-Brito

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
CC BY-NC-SA : This license allows reusers to distribute, remix, adapt and build upon the material in any medium or format for non-commercial purposes only, and only if attribution is given to the creator. If you remix, adapt or build upon the material, you must license the modified material under identical terms.
OAI-PMH URL: https://rperspectivasinvestigativas.org/index.php/multidiscipinaria/oai