Energy regeneration analysis in electric buses: Assessment of potential in urban public transport [Análisis de regeneración energética en autobuses eléctricos: Evaluación del potencial en transporte público urbano]
DOI:
https://doi.org/10.62574/rmpi.v5iTecnologia.412Keywords:
vehicle dynamics, sustainable public, sustainable public transport, (Source: UNESCO Thesaurus).Abstract
The transition to electric mobility in urban public transport is essential to address the challenges of environmental sustainability and energy efficiency in cities. This study examines the energy regeneration potential of electric buses through comprehensive analysis based on vehicle dynamics principles. Through mathematical modelling of resistive forces (aerodynamic, rolling, inertial and gravitational), taking into account urban topographical variations, the energy recoverable during deceleration and descent on slopes was quantified. The findings show that on urban routes with frequent stops and elevation changes, optimised regenerative systems can reduce energy consumption by between 15% and 25%, depending on the driving cycle and topographical configuration of the route. The methodology developed provides a robust framework for evaluating and improving regenerative propulsion systems in public transport fleets, contributing significantly to the energy optimisation of the sector.
Downloads
References
Bloomberg New Energy Finance. (2018). Electric buses in cities: Driving towards cleaner air and lower CO2. https://assets.bbhub.io/professional/sites/24/2018/05/Electric-Buses-in-Cities-Report-BNEF-C40-Citi.pdf
C40 Cities. (2020). How to shift your bus fleet to zero emission by 2030. C40 Knowledge Hub.
Connolly, K. (2019). Electric buses: Cities transition to low-carbon transit. Climate & Capital Media.
Ehsani, M., Gao, Y., Longo, S., & Ebrahimi, K. (2018). Modern electric, hybrid electric, and fuel cell vehicles [Vehículos eléctricos modernos, híbridos eléctricos y de pila de combustible]. CRC Press.
Gao, Y., Chen, L., & Ehsani, M. (1999). Investigation of the effectiveness of regenerative braking for EV and HEV (SAE Technical Paper No. 1999-01-2910). SAE International. https://doi.org/10.4271/1999-01-2910
Gao, Z., Lin, Z., LaClair, T. J., Liu, C., Li, J. M., Birky, A. K., & Ward, J. (2017). Battery capacity and recharging needs for electric buses in city transit service. Energy, 122, 588–600.
González-Longatt, F. M. (2015). Circuit-based battery models: A review [Modelos de baterías basados en circuitos: Una revisión]. In Congreso Iberoamericano de Estudiantes de Ingeniería Eléctrica. Cibelec.
Guzzella, L., & Sciarretta, A. (2013). Vehicle propulsion systems: Introduction to modeling and optimization [Sistemas de propulsión de vehículos: Introducción al modelado y optimización]. Springer-Verlag.
International Energy Agency. (2021). Global EV outlook 2021.
Lajunen, A., & Lipman, T. (2016). Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy, 106, 329–342.
Larminie, J., & Lowry, J. (2012). Electric vehicle technology explained [Explicación de la tecnología de los vehículos eléctricos]. John Wiley & Sons.
Li, L., Lo, H. K., & Xiao, F. (2018). Mixed bus fleet scheduling under range and refueling constraints. Transportation Research Part C: Emerging Technologies, 104, 443–462.
Mahmoud, M., Garnett, R., Ferguson, M., & Kanaroglou, P. (2016). Electric buses: A review of alternative powertrains. Renewable and Sustainable Energy Reviews, 62, 673–684.
McKinsey & Company. (2022). The net-zero transition: What it would cost, what it could bring. McKinsey Global Institute.
Pelletier, S., Jabali, O., & Laporte, G. (2019). The electric vehicle routing problem with energy consumption uncertainty. Transportation Research Part B: Methodological, 126, 225–255.
Teixeira, A. C. R., & Sodré, J. R. (2018). Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO2 emissions. Transportation Research Part D: Transport and Environment, 59, 375–384.
Un-Noor, F., Padmanaban, S., Mihet-Popa, L., Mollah, M. N., & Hossain, E. (2017). A comprehensive study of key electric vehicle (EV) components, technologies, challenges, impacts, and future direction of development [Un estudio exhaustivo de los componentes clave de los vehículos eléctricos (EV), las tecnologías, los desafíos, los impactos y la dirección futura del desarrollo]. Energies, 10(8), Article 1217.
Vepsäläinen, J., Otto, K., Lajunen, A., & Tammi, K. (2018). Computationally efficient model for energy demand prediction of electric city bus in varying operating conditions. Energy, 169, 433–443.
Wong, J. Y. (2008). Theory of ground vehicles [Teoría de los vehículos terrestres]. John Wiley & Sons.
Zhou, B., Wu, Y., Zhou, B., Wang, R., Ke, W., Zhang, S., & Hao, J. (2016). Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions. Energy, 96, 603–613.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Andrés Sebastián Villacrés-Quintana, Andrés Edisson Águila-León , Jorge Andrés Rodas-Buenaño , Giovanny Vinicio Pineda-Silva

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
CC BY-NC-SA : This license allows reusers to distribute, remix, adapt and build upon the material in any medium or format for non-commercial purposes only, and only if attribution is given to the creator. If you remix, adapt or build upon the material, you must license the modified material under identical terms.
OAI-PMH URL: https://rperspectivasinvestigativas.org/index.php/multidiscipinaria/oai