Assessment of the Impact of Geographical Relief on the Charging Autonomy of Electric Vehicles: A Systematic Analysis Using the PRISMA Protocol [Evaluación del impacto del relieve geográfico en la autonomía de carga de vehículos eléctricos: un análisis si]
DOI:
https://doi.org/10.62574/rmpi.v5iTecnologia.427Keywords:
Orography, Electric vehicles, Range, Energy consumption, Charging infrastructure, (Source: UNESCO Thesaurus).Abstract
The rapid increase in the global use of electric vehicles (EVs) has sparked significant interest in identifying the factors that influence their performance, particularly in geographically complex contexts. The orographic characteristics of terrain—such as slope, altitude, and topographic variability—directly affect energy consumption and, consequently, the range of EVs. This study conducts a systematic review using the PRISMA methodology to analyze the latest scientific evidence on the impact of terrain on the charging capacity of these vehicles. By examining 18 selected studies from various databases, the analysis revealed that rugged terrain can significantly increase energy consumption, compromise operational range, and pose challenges for route planning and the deployment of charging stations. It is concluded that adapting energy management systems and charging infrastructure to the geographic conditions is essential to promote more efficient electric mobility.
Downloads
References
Aboelsoud, K., Diab, H. Y., Abdelsalam, M., & Hegaze, M. M. (2024). An efficient GPS algorithm for maximizing electric vehicle range. Applied Sciences (Basel, Switzerland), 14(11), 4858. https://doi.org/10.3390/app14114858
Alp, O., Tan, T., & Udenio, M. (2022). Transitioning to sustainable freight transportation by integrating fleet replacement and charging infrastructure decisions. Omega, 109(102595), 102595. https://doi.org/10.1016/j.omega.2022.102595
de Saxe, C., Ainalis, D., Miles, J., Greening, P., Gripton, A., Thorne, C., & Cebon, D. (2023). An electric road system or big batteries: Implications for UK road freight. Transportation Engineering, 14(100210), 100210. https://doi.org/10.1016/j.treng.2023.100210
Izquierdo-Monge, O., Bonilla, A. Z. V., Lafuente-Cacho, M., Peña-Carro, P., & Hernández-Jiménez, Á. (2025). Performance and energy consumption of electric vehicles used in microgrid management: Analysis of the real impact of ambient temperature. Journal of Power Sources, 635(236511), 236511. https://doi.org/10.1016/j.jpowsour.2025.236511
Khasawneh, H. J., Alzubi, M. A. M., Habib, M., & Al-Tarifi, M. A. (2025). Investigation of road topography on energy consumption of battery electric vehicles (BEVs). 2025 15th International Renewable Energy Congress (IREC), 1-4.
Li, Z., Jiao, X., Zha, M., Yang, C., & Yang, L. (2023). Predictive energy management strategy for hybrid electric air-ground vehicle considering battery thermal dynamics. Applied Sciences (Basel, Switzerland), 13(5), 3032. https://doi.org/10.3390/app13053032
Martin, H., Buffat, R., Bucher, D., Hamper, J., & Raubal, M. (2022). Using rooftop photovoltaic generation to cover individual electric vehicle demand—A detailed case study. Renewable and Sustainable Energy Reviews, 157(111969), 111969. https://doi.org/10.1016/j.rser.2021.111969
Mediouni, H., Ezzouhri, A., Charouh, Z., El Harouri, K., El Hani, S., & Ghogho, M. (2022). Energy consumption prediction and analysis for electric vehicles: A hybrid approach. Energies, 15(17), 6490. https://doi.org/10.3390/en15176490
Papa, G., Santo Zarnik, M., & Vukašinović, V. (2022). Electric-bus routes in hilly urban areas: Overview and challenges. Renewable and Sustainable Energy Reviews, 165(112555), 112555. https://doi.org/10.1016/j.rser.2022.112555
Park, C., Park, H., Jeon, H., Choi, K., & Suh, J. (2023). Evaluation and validation of photovoltaic potential based on time and pathway of solar-powered electric vehicle. Applied Sciences (Basel, Switzerland), 13(2), 1025. https://doi.org/10.3390/app13021025
Perger, T., & Auer, H. (2020). Energy efficient route planning for electric vehicles with special consideration of the topography and battery lifetime. Energy Efficiency, 13(8), 1705-1726. https://doi.org/10.1007/s12053-020-09900-5
Polymeni, S., Spanos, G., Pitsiavas, V., Lalas, A., Votis, K., & Tzovaras, D. (2025). Analyzing energy consumption in battery electric vehicles: A statistical-based approach. En Techrxiv. https://doi.org/10.36227/techrxiv.174123363.39857764/v1
Prajapati, M. L., & Desai, N. A. (2024). Exploring cost effective fleet electrification possibilities for public transit services in Kutch region. Current World Environment, 19(1), 220-236. https://doi.org/10.12944/cwe.19.1.20
Puma-Benavides, D. S., Cevallos-Carvajal, A. S., Masaquiza-Yanzapanta, A. G., Quinga-Morales, M. I., Moreno-Pallares, R. R., Usca-Gomez, H. G., & Murillo, F. A. (2024). Comparative analysis of energy consumption between electric vehicles and combustion engine vehicles in high-altitude urban traffic. World Electric Vehicle Journal, 15(8), 355. https://doi.org/10.3390/wevj15080355
Rahman Khan, M. M., & Rumon, M. M. H. (2024). Recent progress on the synthesis, morphological topography, and battery applications of polypyrrole-based nanocomposites. Polymers, 16(23). https://doi.org/10.3390/polym16233277
Razeghi, M., Roghani Araghi, A., Naseri, A., & Yousefi, H. (2024). Strategic deployment of GIS-optimized solar charging stations for electric vehicles: A multi-criteria decision-making approach. Energy Conversion and Management: X, 24(100712), 100712. https://doi.org/10.1016/j.ecmx.2024.100712
Salman, S. B., & Al-Sahili, K. (2025). Exploring hybrid vehicle integration in Nablus urban shared-taxis: Cost-benefit and exhaust emissions assessment. An-Najah University Journal for Research - A (Natural Sciences), 39(1), 81-92. https://doi.org/10.35552/anujr.a.39.1.2317
Szabo, I., Scurtu, L. I., Raboca, H., & Mariasiu, F. (2023). Topographical optimization of a battery module case that equips an electric vehicle. Batteries, 9(2), 77. https://doi.org/10.3390/batteries9020077
Szumska, E. M., & Jurecki, R. S. (2021). Parameters influencing on electric vehicle range. Energies, 14(16), 4821. https://doi.org/10.3390/en14164821
Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA extension for Scoping Reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467-473. https://doi.org/10.7326/M18-0850
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Juan Diego Zurita-Vargas , Javier Renato Moyano-Arévalo , Jorge Andrés Rodas-Buenaño , Jorge Luis Cepeda-Miranda

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
CC BY-NC-SA : This license allows reusers to distribute, remix, adapt and build upon the material in any medium or format for non-commercial purposes only, and only if attribution is given to the creator. If you remix, adapt or build upon the material, you must license the modified material under identical terms.
OAI-PMH URL: https://rperspectivasinvestigativas.org/index.php/multidiscipinaria/oai