Comprehensive procedure for energy-dynamic analysis and dimensioning of hybrid systems in M1 vehicles [Procedimiento integral para análisis energético-dinámico y dimensionamiento de sistemas híbridos en vehículos M1]
DOI:
https://doi.org/10.62574/rmpi.v5iTecnologia.416Keywords:
hybrid systems, pre-dimensioning, multi-objective optimisation, (Source: UNESCO Thesaurus).Abstract
The pre-dimensioning of hybrid propulsion systems requires methodologies that integrate real operating data with multi-objective optimisation criteria. This study develops a comprehensive methodology to translate real-time monitoring information into optimised design parameters for M1 hybrid vehicles. A seven-stage methodological framework was implemented, incorporating systematic PRISMA review, mathematical modelling based on SAE J2452 equations, statistical analysis of WLTP cycles and optimisation using the NSGA-II algorithm. Energy demand analysis revealed that critical conditions (WLTP High with a 6% slope) increase power requirements by up to 59.31 kW, quadrupling the average demand. Multi-objective optimisation determined optimal configurations with a hybridisation degree of 0.45, ICE power of 52.7 kW, electric motor power of 43.1 kW and battery capacity of 1.2 kWh.
Downloads
References
Cao, K., Hu, M., Li, W., Chen, L., Yang, G., Zhai, J., & Fu, C. (2024). Research on economic mode switching control strategy for dual-motor four-wheel drive vehicles considering motor resistance and transient mode switching loss. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 238(10-11), 3026–3043. https://doi.org/10.1177/09544070231182739
Galati, A., Adamashvili, N., & Crescimanno, M. (2023). A feasibility analysis on adopting electric vehicles in the short food supply chain based on GHG emissions and economic costs estimations. Sustainable Production and Consumption, 36, 49–61. https://doi.org/10.1016/j.spc.2022.12.015
Hu, X., Zou, Y., & Yang, Y. (2016). Greener plug-in hybrid electric vehicles incorporating renewable energy and rapid system optimization. Energy, 111, 971–980. https://doi.org/10.1016/j.energy.2016.06.037
Huang, Y., Surawski, N. C., Organ, B., Zhou, J. L., Tang, O. H., & Chan, E. F. (2019). Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles. Science of the Total Environment, 659, 275–282. https://doi.org/10.1016/j.scitotenv.2018.12.349
Kim, N., Kwon, J., & Rousseau, A. (2018). Optimization of powertrain design for hybrid electric vehicles considering varying vehicle conditions. IEEE Transactions on Vehicular Technology, 67(8), 6732–6742. https://doi.org/10.1109/TVT.2018.2819953
Liu, J., & Peng, H. (2010). A systematic design approach for two planetary gear split hybrid vehicles. Vehicle System Dynamics, 48(11), 1395–1412. https://doi.org/10.1080/00423114.2010.512634
López Espinel, E. F., Castillo Medina, A. G., & Ribadeneira Ramírez, V. S. (2024). Optimización del rendimiento de vehículos livianos M1 mediante monitoreo de comportamiento energético y dinámico. Revista Científica Cultura, Comunicación y Desarrollo, 9(S1), 199–205. http://rccd.ucf.edu.cu/index.php/rccd
Melman, T., de Winter, J., Mouton, X., Tapus, A., & Abbink, D. (2021). How do driving modes affect the vehicle's dynamic behaviour? Comparing Renault's Multi-Sense sport and comfort modes during on-road naturalistic driving. Vehicle System Dynamics, 59(4), 485–503. https://doi.org/10.1080/00423114.2019.1693049
Miao, Y., Tian, Y., Zhang, Y., & Ma, L. (2024). Parameter optimization and energy management for a dual-motor powertrain in battery electric heavy trucks. In 2024 IEEE 22nd International Conference on Industrial Informatics (INDIN) (pp. 1–6). IEEE. https://doi.org/10.1109/INDIN51773.2024.10671669
Mu, G., Wei, Q., Xu, Y., Li, J., Zhang, H., Yang, F., Zhang, J., & Li, Q. (2025). State of health estimation of lithium-ion batteries based on feature optimization and data-driven models. Energy, 316, Article 134578. https://doi.org/10.1016/j.energy.2025.134578
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, Article n71. https://doi.org/10.1136/bmj.n71
SAE International. (2017). Stepwise coastdown methodology for measuring tire rolling resistance (SAE Recommended Practice J2452_201707). https://www.sae.org/content/j2452_201707
Talaat, M., Mohamed, A. R., Sedhom, B. E., Wahba, A., Elkholy, M. H., Elbehairy, N. M., Song, D., & Senjyu, T. (2024). Monolithic design of self-adaptive CMOS converter and robust event-triggered consensus control for integration of multi-renewable energy sources with battery storage system. Journal of Energy Storage, 88, Article 111498. https://doi.org/10.1016/j.est.2024.111498
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Esteban Fernando López-Espinel, Antonio Gabriel Castillo-Medina, Javier Renato Moyano-Arévalo, Juan Diego Zurita-Vargas

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
CC BY-NC-SA : This license allows reusers to distribute, remix, adapt and build upon the material in any medium or format for non-commercial purposes only, and only if attribution is given to the creator. If you remix, adapt or build upon the material, you must license the modified material under identical terms.
OAI-PMH URL: https://rperspectivasinvestigativas.org/index.php/multidiscipinaria/oai