Análisis de gestión energética mediante ciclos personalizados en vehículos eléctricos/híbridos para entornos urbanos orográficos [Energy management analysis using customised cycles in electric/hybrid vehicles for urban environments with steep terrain]

Autores/as

  • Antonio Gabriel Castillo-Medina Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador
  • Esteban Fernando López-Espinel Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador
  • Juan Diego Zurita-Vargas Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador
  • Mario Fernando Vargas-Brito Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

DOI:

https://doi.org/10.62574/rmpi.v5iTecnologia.414

Palabras clave:

gestión energética, ciclos de conducción, vehículos eléctricos, (Fuente: Tesauro UNESCO).

Resumen

La gestión energética eficiente en vehículos eléctricos e híbridos representa un desafío tecnológico complejo que requiere estrategias adaptadas a condiciones locales específicas. Esta revisión sistemática analiza 20 estudios científicos publicados entre 2018 y 2024, siguiendo el protocolo PRISMA, para examinar estrategias de gestión energética fundamentadas en ciclos de conducción personalizados. Los resultados evidencian que la personalización de ciclos mejora la precisión de estimaciones de consumo en 18%, mientras que técnicas de inteligencia artificial como redes neuronales temporales convolucionales alcanzan errores menores al 1.5% en estimación de estado de carga. Las estrategias de gestión energética basadas en aprendizaje por refuerzo Q-learning reducen la degradación de baterías hasta 20% comparado con métodos tradicionales. La integración de variables topográficas y climáticas resulta fundamental para optimizar el rendimiento en regiones andinas, donde pendientes superiores al 4% incrementan el consumo energético en 13.7%.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Antonio Gabriel Castillo-Medina, Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

Esteban Fernando López-Espinel, Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

Juan Diego Zurita-Vargas , Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

Mario Fernando Vargas-Brito, Universidad Regional Autónoma de los Andes, Ambato, Tungurahua, Ecuador

Citas

Changizian, S., Ahmadi, P., Raeesi, M., & Javani, N. (2020). Performance optimization of hybrid hydrogen fuel cell-electric vehicles in real driving cycles. International Journal of Hydrogen Energy, 45(60), 35180–35197. https://doi.org/10.1016/j.ijhydene.2020.01.015

Eckert, J. J., Barbosa, T. P., da Silva, S. F., Silva, F. L., Silva, L. C. A., & Dedini, F. G. (2022). Electric hydraulic hybrid vehicle powertrain design and optimization-based power distribution control to extend driving range and battery life cycle. Energy Conversion and Management, 252, Article 115094. https://doi.org/10.1016/j.enconman.2021.115094

Feng, X., Chen, J., Zhang, Z., Miao, S., & Zhu, Q. (2021). State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network. Energy, 236, Article 121360. https://doi.org/10.1016/j.energy.2021.121360

Fu, Z., Zhu, L., Tao, F., Si, P., & Sun, L. (2020). Optimization based energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle considering fuel economy and fuel cell lifespan. International Journal of Hydrogen Energy, 45(15), 8875–8886. https://doi.org/10.1016/j.ijhydene.2020.01.017

Gong, H., Zou, Y., Yang, Q., Fan, J., Sun, F., & Goehlich, D. (2018). Generation of a driving cycle for battery electric vehicles: A case study of Beijing. Energy, 150, 901–912. https://doi.org/10.1016/j.energy.2018.02.092

Guo, J., & Jiang, F. (2021). A novel electric vehicle thermal management system based on cooling and heating of batteries by refrigerant. Energy Conversion and Management, 237, Article 114145. https://doi.org/10.1016/j.enconman.2021.114145

Hannan, M. A., How, D. N. T., Hossain Lipu, M. S., Ker, P. J., Dong, Z. Y., Mansur, M., & Blaabjerg, F. (2021). SOC estimation of Li-ion batteries with learning rate-optimized deep fully convolutional network. IEEE Transactions on Power Electronics, 36(7), 7349–7353. https://doi.org/10.1109/TPEL.2020.3041876

How, D. N. T., Hannan, M. A., Lipu, M. S. H., Sahari, K. S. M., Ker, P. J., & Muttaqi, K. M. (2020). State-of-charge estimation of Li-ion battery in electric vehicles: A deep neural network approach. IEEE Transactions on Industry Applications, 56(5), 5565–5574. https://doi.org/10.1109/TIA.2020.3004294

Hu, J., Liu, D., Du, C., Yan, F., & Lv, C. (2020). Intelligent energy management strategy of hybrid energy storage system for electric vehicle based on driving pattern recognition. Energy, 198, Article 117298. https://doi.org/10.1016/j.energy.2020.117298

Jahanpanah, J., Soleymani, P., Karimi, N., Babaie, M., & Saedodin, S. (2023). Transient cooling of a lithium-ion battery module during high-performance driving cycles using distributed pipes - A numerical investigation. Journal of Energy Storage, 74, Article 109278. https://doi.org/10.1016/j.est.2023.109278

Khalili, H., Ahmadi, P., Ashjaee, M., & Houshfar, E. (2023). Thermal analysis of a novel cycle for battery pre-warm-up and cool down for real driving cycles during different seasons. Journal of Thermal Analysis and Calorimetry, 148(16), 8175–8193. https://doi.org/10.1007/s10973-022-11601-3

Liu, H., Chen, F., Tong, Y., Wang, Z., Yu, X., & Huang, R. (2020). Impacts of driving conditions on EV battery pack life cycle. World Electric Vehicle Journal, 11(1), Article 17. https://doi.org/10.3390/wevj11010017

Liu, T., Tan, W., Tang, X., Zhang, J., Xing, Y., & Cao, D. (2021). Driving conditions-driven energy management strategies for hybrid electric vehicles: A review. Renewable and Sustainable Energy Reviews, 151, Article 111521. https://doi.org/10.1016/j.rser.2021.111521

Liu, Y., Li, J., Zhang, G., Hua, B., & Xiong, N. (2021). State of charge estimation of lithium-ion batteries based on temporal convolutional network and transfer learning. IEEE Access, 9, 34177–34187. https://doi.org/10.1109/ACCESS.2021.3057371

Nguyen, B. H., German, R., Trovao, J. P. F., & Bouscayrol, A. (2019). Real-time energy management of battery/supercapacitor electric vehicles based on an adaptation of Pontryagin's minimum principle. IEEE Transactions on Vehicular Technology, 68(1), 203–212. https://doi.org/10.1109/TVT.2018.2881057

Park, I., Kim, C., Lee, H., Myung, C. L., & Min, K. (2025). Comprehensive analysis of battery thermal management and energy consumption in an electric vehicle: Impact of driving modes and ambient temperatures. International Journal of Automotive Technology, 26(1), 1–16. https://doi.org/10.1007/s12239-024-00202-8

Tang, X., Guo, Q., Li, M., Wei, C., Pan, Z., & Wang, Y. (2021). Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning. Journal of Power Sources, 494, Article 229727. https://doi.org/10.1016/j.jpowsour.2021.229727

Xu, B., Shi, J., Li, S., Li, H., & Wang, Z. (2021). Energy consumption and battery aging minimization using a Q-learning strategy for a battery/ultracapacitor electric vehicle. Energy, 229, Article 120705. https://doi.org/10.1016/j.energy.2021.120705

Xu, J., Mei, X., Wang, X., Fu, Y., Zhao, Y., & Wang, J. (2021). A relative state of health estimation method based on wavelet analysis for lithium-ion battery cells. IEEE Transactions on Industrial Electronics, 68(8), 6973–6981. https://doi.org/10.1109/TIE.2020.3001836

Zahid, T., Xu, K., Li, W., Li, C., & Li, H. (2018). State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles. Energy, 162, 871–882. https://doi.org/10.1016/j.energy.2018.08.071

Zhang, J., Wang, Z., Liu, P., & Zhang, Z. (2020). Energy consumption analysis and prediction of electric vehicles based on real-world driving data. Applied Energy, 275, Article 115408. https://doi.org/10.1016/j.apenergy.2020.115408

Zhang, Q., Wang, L., Li, G., & Liu, Y. (2020). A real-time energy management control strategy for battery and supercapacitor hybrid energy storage systems of pure electric vehicles. Journal of Energy Storage, 31, Article 101721. https://doi.org/10.1016/j.est.2020.101721

Descargas

Publicado

2025-08-08

Cómo citar

Castillo-Medina, A. G., López-Espinel, E. F., Zurita-Vargas , J. D., & Vargas-Brito, M. F. (2025). Análisis de gestión energética mediante ciclos personalizados en vehículos eléctricos/híbridos para entornos urbanos orográficos [Energy management analysis using customised cycles in electric/hybrid vehicles for urban environments with steep terrain]. Revista Multidisciplinaria Perspectivas Investigativas, 5(Tecnologia), 98–107. https://doi.org/10.62574/rmpi.v5iTecnologia.414