Revista Multidisciplinaria Perspectivas Investigativas
Multidisciplinary Journal Investigative Perspectives
Vol. 5(especial tecnología), 162-181, 2025
https://doi.org/10.62574/rmpi.v5iTecnologia.425
Comparación de rendimiento estructural entre los aceros ASTM A36 y A500 Grado B en contextos de ingeniería automotriz
Comparison of Structural Performance between ASTM A36 and A500 Grade B Steels in Automotive Engineering Contexts
Edwin Javier Morejón-Sánchez
Esteban Fernando López-Espinel
Andrés Edisson Águila-León
Mario Fernando Vargas-Brito
180
ASTM International. (2023). ASTM A500/A500M-23: Standard specification for cold-formed
welded and seamless carbon steel structural tubing in rounds and shapes.
https://doi.org/10.1520/A0500_A0500M-23
Bartkowski, P., Cieślak, M., & Stachowiak, A. (2023). Material selection optimization for
lightweight structural automotive components. Materials & Design, 227, 111688.
https://doi.org/10.1016/j.matdes.2023.111688
Caminero, M. A., Lopez-Montero, A., & Pavlopoulou, S. (2022). Fatigue behavior assessment of
automotive steel tubular structures: Experimental and computational approaches.
International Journal of Fatigue, 163, 107115.
https://doi.org/10.1016/j.ijfatigue.2022.107115
Dhaliwal, J. S., Singh, J., & Singh, G. (2022). Experimental investigation of energy absorption
characteristics in structural steel components for crashworthiness applications. Thin-
Walled Structures, 176, 109291. https://doi.org/10.1016/j.tws.2022.109291
García-Moreno, F., Liebscher, A., & Banhart, J. (2023). Weight reduction strategies in modern
automotive body structures: A comprehensive review. Progress in Materials Science,
130, 100947. https://doi.org/10.1016/j.pmatsci.2022.100947
Gholampour, A., & Ozbakkaloglu, T. (2022). Mechanical properties of conventional and high-
strength steels: A comprehensive review of experimental data and analytical models.
Journal of Materials Research and Technology, 18, 2235-2261.
https://doi.org/10.1016/j.jmrt.2022.03.146
Jiang, X., & Chen, W. (2023). Material selection principles for structural components in electric
vehicles: Challenges and opportunities. Journal of Materials Engineering and
Performance, 32(4), 2687-2701. https://doi.org/10.1007/s11665-022-07323-0
Kanni, K., Venkatachalam, G., & Mohan, S. (2023). Advanced digital image processing techniques
for automated microstructural phase quantification in low carbon steels. Measurement
Science and Technology, 34(3), 035401. https://doi.org/10.1088/1361-6501/aca63c
Khosravifard, A., & Aghayan, S. (2022). Mechanical behavior of tubular steel sections under
combined loading conditions relevant to automotive applications. Engineering Structures,
262, 114309. https://doi.org/10.1016/j.engstruct.2022.114309
Liu, J., & Ramírez, C. (2024). Impact response analysis of ASTM A500 Grade B steel tubular
sections for automotive safety applications. International Journal of Impact
Engineering, 175, 104373. https://doi.org/10.1016/j.ijimpeng.2023.104373
López-Espinel, E. F., Pineda, G. V., Cepeda, J. L., & Zurita, J. D. (2023). Análisis de imágenes
metalográficas mediante el uso de OpenCV para la estimación del contenido de carbono
en acero A36. Revista Dilemas Contemporáneos: Educación, Política y Valores, 11(1),
Artículo no.:100. https://doi.org/10.46377/dilemas.v11i1.3421
Meghwal, A., Anupam, A., & Rajpal, S. (2023). Microstructural aspects of strength and toughness
in low and medium carbon steels. Journal of Materials Research, 38(3), 1126-1142.
https://doi.org/10.1557/s43578-022-00848-z
Mehrabi, K., Rahimian, M., & Hadavi, V. (2022). Quantitative metallography of conventional steels:
Challenges and advances in digital approaches. Metals, 12(5), 847.
https://doi.org/10.3390/met12050847
Moradshahi, M., Tavakoli, R., & Hosseini-Toudeshky, H. (2022). Microstructure-based
assessment of mechanical properties in structural steels. Materials
Science and Engineering: A, 832, 142394.
https://doi.org/10.1016/j.msea.2021.142394