Revista Multidisciplinaria Perspectivas Investigativas
Multidisciplinary Journal Investigative Perspectives
Vol. 5(especial tecnología), 69-79, 2025
Revisión de Estrategias de Simulación MATLAB/Simulink para Eficiencia Energética en Propulsión Electrificada
Review of MATLAB/Simulink Simulation Strategies for Energy Efficiency in Electrified Propulsion
Esteban Fernando López-Espinel
Edwin Javier Morejón-Sánchez
Antonio Gabriel Castillo-Medina
78
FINANCIAMIENTO
No monetario
CONFLICTO DE INTERÉS
No existe conflicto de interés con personas o instituciones ligadas a la investigación.
AGRADECIMIENTOS
A UNIANDES.
REFERENCIAS
Ehsani, M., Gao, Y., & Emadi, A. (2023). Modern electric, hybrid electric, and fuel cell vehicles:
Fundamentals, theory, and design. CRC Press. https://doi.org/10.1201/9781003288197
García-Sánchez, J. A., Jażdżewska, J., & Meier, O. (2023). Electric vehicle battery models in
simulation environments: A comprehensive review. Journal of Energy Storage, 58,
Article 106450. https://doi.org/10.1016/j.est.2022.106450
Guo, J., He, H., & Sun, C. (2023). Digital twin for electric vehicle powertrains: A review on
modeling, simulation, and applications. IEEE Transactions on Vehicular Technology,
72(9), 9724–9739. https://doi.org/10.1109/TVT.2023.3271903
Hayes, J. G., & Thompson, K. (2023). Modeling and simulation of electrified powertrains: A
comprehensive review. IEEE Transactions on Transportation Electrification, 9(1), 467–
485. https://doi.org/10.1109/TTE.2022.3185492
Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2018). Metodología de la
investigación: Las rutas cuantitativa, cualitativa y mixta. McGraw-Hill Interamericana.
https://doi.org/10.17993/CcyLl.2018.15
Kang, D., Lim, O., & Jung, J. (2022). Simscape-based thermal management system modeling
for battery electric vehicles: A comparison of cooling strategies. Applied Thermal
Engineering, 210, Article 118359. https://doi.org/10.1016/j.applthermaleng.2022.118359
Kim, J., & Park, S. (2022). Energy management strategy for parallel hybrid electric vehicles
using predictive terrain information. IEEE Transactions on Vehicular Technology, 71(5),
4731–4742. https://doi.org/10.1109/TVT.2022.3143257
Kumar, P., Chakraborty, S., & Banerjee, S. (2023). Model-based design approach for electric
vehicle controls: From simulation to prototype. IEEE Access, 11, 57890–57905.
https://doi.org/10.1109/ACCESS.2023.3287574
Li, W., Xia, Y., & Zhou, K. (2024). Reinforcement learning for energy optimization in electrified
vehicles: Simulation results and real-world validation. IEEE Transactions on Control
Systems Technology, 32(1), 214–228. https://doi.org/10.1109/TCST.2023.3245879
Liu, K., & Peng, H. (2022). Optimal control of electrified vehicles: Theory and applications.
Springer. https://doi.org/10.1007/978-3-030-86431-2
Liu, X., Wang, R., Zhang, Y., & Sun, Z. (2024). Adaptive energy management for series-parallel
hybrid electric vehicles based on driving pattern recognition and terrain information.
Energy, 275, Article 127368. https://doi.org/10.1016/j.energy.2023.127368
Martínez, A., & Johnson, B. (2024). Thermal-electrical coupled modeling of battery electric
vehicles under extreme conditions. Journal of Power Sources, 550, Article 232468.
https://doi.org/10.1016/j.jpowsour.2023.232468
Miller, J. M., & Johnson, V. H. (2024). Validation methodologies for electrified vehicle simulation
models: Current practices and future directions. SAE International Journal of Alternative
Powertrains, 12(2), 213–237. https://doi.org/10.4271/05-12-02-0012